MAR 17, 2016 6:00 AM PDT

The history of dopamine

Presented at: Neuroscience
Speakers
  • Swedish Pharmacologist, Nobel Prize Winner
    Biography
      Arvid Carlsson, Swedish pharmacologist who, along with Paul Greengard and Eric Kandel, was awarded the 2000 Nobel Prize for Physiology or Medicine for his research establishing dopamine as an important neurotransmitter in the brain.

      Carlsson received a medical degree from the University of Lund in 1951 and subsequently held teaching positions there until 1959, when he became professor of pharmacology at the University of Gothenburg. When Carlsson began his pioneering studies in the 1950s, scientists thought that dopamine worked only indirectly, by causing brain cells to make another neurotransmitter, noradrenaline. Using a sensitive test that he had devised, Carlsson detected particularly high levels of the compound in areas of the brain that controlled walking and other voluntary movements. In animal experiments he showed that depletion of dopamine impairs the ability to move. When Carlsson treated dopamine-depleted animals with the amino acid l-dopa, the symptoms disappeared, and the animals moved normally again. This led to the use of l-dopa as a treatment for Parkinson disease, and it eventually became the single most important medication for the disease. Carlsson's work also contributed to an understanding of the relationship between neurotransmitters and mental states and led to the introduction of new antidepressant drugs.

    Abstract:

    In this presentation, Arvid Carlsson, who was awarded the Nobel prize in 2000 for his discovery of the transmitter role of dopamine, will be interviewed by Elias Eriksson. The following aspects will be covered during their discussion: 1. How the transmitter role of dopamine was disclosed. 2. The importance of dopamine for Parkinson’s disease. 3. The importance of D2 antagonism for the symptom-reducing effect of typical and atypical antipsychotics. 4. Which other conditions, apart from Parkinson’s disease and psychosis, are likely to be closely related to brain dopaminergic neurotransmission? 5. The concept of partial D2 agonism. 6. Dopamine stabilizers: the next generation of dopamine-modulating drugs?
     
    Learning objectives:
     
    1. To provide a historical background for the current assumption that dopamine is a brain neurotransmitter of importance for a number of neurological and psychiatric conditions. 
    2. To present the rational for introducing dopamine stabilizers as the next generation of dopamine-modulating agents.
     


    Show Resources
    You May Also Like
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    LIVE NOW!
    C.E. CREDITS
    LIVE NOW!
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    FEB 19, 2020 11:00 AM PST
    C.E. CREDITS
    FEB 19, 2020 11:00 AM PST
    DATE: February 19, 2020TIME: 11:00am PST, 2:00pm EST...
    Loading Comments...
    Show Resources
    Attendees