MENU
AUG 30, 2016 8:00 AM PDT

Translating Pluripotent Stem Cell Therapies For Focal Brain Disorders

Speaker
  • Senior Research Scientist, Regenerative Medicine RxGen, Inc.
    Biography
      Dr. Wakeman's primary research goals are directed at determining the long-term value of stem cell-based therapeutics for regenerative medicine. His past work using dopamine neurons derived from pluripotent stem cells, both human embryonic stem cells and induced pluripotent stem cells (iPSC), as a cell based strategy for dopamine replacement in animal models of Parkinson's disease has consistently supported therapeutic value moving toward the clinic. Dr. Wakeman recently joined RxGen, Inc., a translational therapeutics and disease modeling company, where he is applying his expertise and experience in regenerative medicine to bridge the translational research gap using primate models of human disease. Dr. Wakeman also holds an Adjunct Assistant Professor position in the Department of Psychiatry at Yale School of Medicine.

    Abstract
    A major challenge for the clinical application of pluripotent stem cell therapy for neurodegenerative diseases is large-scale manufacturing and cryopreservation of neurons and glia that can be prepared for surgery with minimal manipulation. To address this obstacle, midbrain dopamine (iPSC-mDA) and forebrain (iPSC-FB) lineage neurons were derived from human induced pluripotent stem cells and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic neurons retained high-viability with gene, protein, and electrophysiological signatures consistent with that of the neuronal lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without sub-culturing into the 6-OHDA-lesioned rat and MPTP-lesioned nonhuman-primate models of PD. Grafted neurons retained midbrain lineage with extensive innervation of both rodent and monkey brain with no aberrant growth. Behavioral assessment in parkinsonian rats demonstrated significant reversal in functional deficits up to 6-months post-transplantation. In addition, cryopreserved iPSC-FB neurons grafted into the striatum of athymic NUDE rats survived and innervated distant anterior and posterior brain structures at 9-months post-grafting. These findings demonstrate a simple and efficacious surgical intervention to deliver cryopreserved iPSC-derived neurons for brain disorders and support translational development of pluripotent cell-based therapies in neurodegenerative disease.
     

    Show Resources
    You May Also Like
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    JUL 30, 2020 10:00 AM PDT
    C.E. CREDITS
    JUL 30, 2020 10:00 AM PDT
    DATE: July 30, 2020 TIME: 10:00am PT Regenerative medicine has become a key focus worldwide and the number of stem cell, especially pluripotent stem cell (PSC)-based clinical trials are rapi...
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    Loading Comments...
    Show Resources
    Attendees
    • See more