SEP 10, 2015 9:22 PM PDT

Miraculous Molecule

WRITTEN BY: Ilene Schneider
A drug-like molecule could prove valuable in cancer research with the potential of developing a new pharmaceutical. 
Drug-like molecule could provide effective cancer target.
Researchers from the Ontario Institute for Cancer Research (OICR) and the Structural Genomics Consortium (SGC) at the MaRS Discovery District in Toronto have developed a new drug prototype called OICR-9429 and made it available to the research community. Research performed by international groups using OICR-9429 has demonstrated its effectiveness in halting cancer cell growth in breast cancer cell lines and a specific subtype of leukemia cells.
 
While a great deal of time and resources are needed to test new cancer treatments, most ideas fail late in the development process. Most of the activities are carried out in parallel, without collaboration, causing duplication of effort and increased cost of cancer drugs. By offering early-stage drug-like compounds such as OICR-9429 to other researchers, OICR and the SGC are enabling more rapid testing of new treatment strategies and sharing of the results. Independent studies from Philadelphia and Vienna have offered evidence that the cellular target of OICR-9429 could be important for drug discovery.
 
According to Dr. Cheryl Arrowsmith, chief scientist at SGC Toronto, professor in the Department of Medical Biophysics, Faculty of Medicine at the University of Toronto and a senior scientist, Princess Margaret Cancer Centre, University Health Network, "In the time that it would normally take to negotiate a legal agreement to provide OICR-9429 to other research teams we have received results back from our collaborators showing that it can kill two different types of cancer cells. Opening our chemistry capabilities to the world's scientists allowed us to crowdsource and accelerate the research."
 
As Dr. Rima Al-awar, director and senior principal investigator, Drug Discovery Program, OICR, explained, "It is remarkable how quickly our research results were translated into discoveries by the groups around the world. We are looking forward to seeing more research conducted with OICR-9429 and showing that this new approach to early-stage drug discovery has significant advantages."
 
OICR-9429 inhibits a protein called WDR5. Two recent studies evaluated its effect on breast cancer and leukemia cell lines and offered promising results.
 
Dr. Shelly Berger at the University of Pennsylvania used OICR-9429 to stop cancer cell growth in a panel of breast cancer cell lines driven by mutated forms of the gene p53. In its normal form p53 is a tumor-suppressor, but once it is mutated, it causes cancers to grow though its stimulation of WDR5 function. The p53 gene is mutated in at least half of all cancers and is dysregulated in others.
 
Drs. Florian Grebien and Giulio Superti-Furga at the CeMM Research Center for Molecular Medicine in Vienna, Austria, used OICR-9429 to show the potential of WDR5 as a therapeutic target for leukemia. They found that OICR-9429 stopped the growth of leukemia cells with a very specific mutation found in about nine per cent of patients with acute myeloid leukemia. 
 
These two studies culminated in joint publications, in Nature and Nature Chemical Biology respectively, between the international researchers and the Ontario-based OICR and SGC teams, as reported in Drug Discovery & Development
 
OICR-9429 is one of a series of drug-like compounds developed by the SGC. These compounds are enabling a new approach to early-stage drug discovery. The SGC and OICR teams are continuing their collaboration to identify additional drug-like molecules to advance cancer drug discovery.
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
JUN 18, 2021
Cancer
Cancer cell lines are too dissimilar from human cancer cells
JUN 18, 2021
Cancer cell lines are too dissimilar from human cancer cells
A new study finds cultured cancer cells lack genetic similarity to humans. This is concerning because cancer cell lines ...
JUL 08, 2021
Genetics & Genomics
Is It Possible to Prevent Leukemia in Down Syndrome Patients?
JUL 08, 2021
Is It Possible to Prevent Leukemia in Down Syndrome Patients?
Children with Down syndrome have a significantly higher likelihood myeloid leukemia occurring in the first five years of ...
AUG 07, 2021
Cancer
New Drug Combo Eliminates Pancreatic Cancer in Mice
AUG 07, 2021
New Drug Combo Eliminates Pancreatic Cancer in Mice
A combination of three immunotherapy drugs can eliminate pancreatic tumors in mice. The study was published in Canc ...
SEP 06, 2021
Drug Discovery & Development
Antibiotics Increase Colon Cancer Risk by 17%
SEP 06, 2021
Antibiotics Increase Colon Cancer Risk by 17%
People who take antibiotics are at an increased risk of developing colon cancer within five to ten years. The research w ...
OCT 10, 2021
Cell & Molecular Biology
DNA Can Reveal Treatments for Lung Cancer in 'Never-Smoked' Patients
OCT 10, 2021
DNA Can Reveal Treatments for Lung Cancer in 'Never-Smoked' Patients
There is a well-known causal connection between smoking and lung cancer, and most research on lung cancer has been focus ...
OCT 26, 2021
Immunology
Two Different Arms, Twice the Cancer-Killing Potential?
OCT 26, 2021
Two Different Arms, Twice the Cancer-Killing Potential?
Our immune system has developed an arsenal of sophisticated molecular weapons to defend us against the continuous barrag ...
Loading Comments...