MAR 08, 2017 07:39 PM PST
DNA Enhancer Elements Promote Colorectal Cancer
WRITTEN BY: Carmen Leitch
2 16 578

Colon and rectal cancer rate are on the rise, especially in the young. Scientists don't know what lies behind the increase, but knowing more about colorectal cancer will help improve therapeutics for the disease. New work from researchers at Case Western Reserve University has implicated a genetic feature called enhancers in the promotion of colon cancer formation. Alterations in very specific parts of the genome can actually promote the expression of genes that encourage tumor growth. These alterations, which happen outside of genes related to colorectal cancer, are very consistently observed in tumor samples; that consistency opens a window for drug development.

The genome is replete with small bits of DNA that can regulate gene expression. One such piece, called an enhancer element, can interact with various regions of the genome, some of which are physically very far away, when genetic material is compacted and folded in three dimensions. This new work indicates that on the chromosomes that contain colorectal cancer genes, there are high levels of enhancer elements that can turn on the expression of certain genes. The video above is a lecture from the NIH regarding enhancers.

"Our data suggest that the survival of colon cancer cells often depends on the expression of genes associated with common enhancer changes," explained the senior author of the work, Peter Scacheri, PhD, an Associate Professor of Genetics and GenomeSciences at Case Western Reserve University School of Medicine. Scacheri said that these common alterations in enhancers are in alignment with specific DNA sequences that are known to elevate colorectal cancer risk.

The scientists found that thousands of enhancer elements were unexpectedly changed in colorectal cancer samples. After tinkering with the enhancer elements, that investigators observed that the previously active colorectal cancer genes became inactive. The researchers thus suggest that the manipulating enhancer elements might be a way to silence the colorectal cancer genes and hopefully slow the growth of tumors.

The research team aimed to analyze a diverse set of colorectal cancer samples in order to elucidate the role of these enhancer alterations. While the work recognizes the influence of previously identified, causative genetic mutations, it also shows that there are other areas of the genome involved in colorectal cancer development. It is postulated that the enhancer elements work in conjunction with genetic mutations in the growth of colorectal tumors.

"Enhancer elements are distinguishable by specific chemical tags on DNA, like bulbs on a string of lights," Scacheri explained. "Identifying common enhancer changes helps us pinpoint a specific set of genes that are consistently switched on during transformation of normal cells to cancer cells. These genes define the tumor state, and therefore could be just as important to tumor growth as those that are commonly mutated."

The Centers for Disease Control and Prevention identifies colorectal cancer causes as the second leading cause of cancer-related death in the United States. These findings indicate that these enhancer elements might be prime therapeutic targets to combat the cancer. "Our next step is to determine exactly how the common enhancers form in colon cancer, and whether we can target their destruction as a strategy to kill tumor cells without harming normal cells," concluded Scacheri.

The above video from Mayo Clinic discusses how colonoscopies can help prevent colorectal cancer.

Sources: AAAS/Eurekalert! via Case Western Reserve University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 03, 2018
Drug Discovery
APR 03, 2018
Two-Drug Strategy for Non-Small Cell Lung Cancer (NSCLC)
According to the National Cancer Institute, lung cancer is the most common cause of cancer death for both men and women in the U.S. More specifically, non-
MAY 21, 2018
Cancer
MAY 21, 2018
Malarial Organism Characteristics Leads Researchers To Potential Cancer Therapeutic Target
The malarial parasite expresses a protein, VAR2CSA, that binds to chondroitin sulfate (CS) found on both placental and cancer tissues. Recombinant rVAR2 could be used to target drugs to CS.
MAY 30, 2018
Cell & Molecular Biology
MAY 30, 2018
Diagnosing Deadly Kidney Cancers Sooner
Researchers have found that deadly kidney cancers can be identified by assessing their evolutionary path, which is different for distinct types.
JUN 19, 2018
Cancer
JUN 19, 2018
Cancer-Related Cognitive Impairment aka "ChemoBrain" Needs YOU!
There is a need for neuroscientists to investigate what is known as chemobrain; survivors and providers are looking for ideas for approaches to mitigating this late effect chemo related issue
JUN 25, 2018
Cancer
JUN 25, 2018
B-cell Lymphoma Develops After MPN JAK1/2 Therapy
Patients with myeloproliferative neoplasms treated with JAK1/2 inhibitor therapy are at increased risk of developing aggressive B-cell lymphoma due to pre-existing B-cell clone specifically a
JUL 17, 2018
Cancer
JUL 17, 2018
Large Multifactorial NIH Study Announced for Prostate Cancer Aggressiveness in African-American Men
The largest coordinated study on Prostate cancer aims to look at both genetic and environmental factors that lead to increased risk and cancer aggressiveness in African-American men compared
Loading Comments...