JUL 10, 2018 02:48 PM PDT

Newly Found Enzyme can Help Turn Plant Waste to Plastic

WRITTEN BY: Carmen Leitch
2 1 143

As the amount of trash in the world grows, scientists are searching for innovative ways to get rid of it. Now, researchers have discovered a family of enzymes that can open up new avenues for converting plant waste into desirable products like nylon, fuel or plastics. This team has already announced the improvement of an enzyme that can break down plastic and may help us find environmentally-friendly ways to dispose of plastic trash; that research is described in the video. 

These enzymes can work to degrade lignin, a primary part of plants that scientists have been trying to efficiently digest for a long time. In nature, the molecule acts as a scaffold, helps defend against pathogens, and aids in water distribution. The findings have been reported in the journal Nature Communications by a team of researchers including Professor John McGeehan of the University of Portsmouth, Dr. Gregg Beckham of the US Department of Energy's National Renewable Energy Laboratory (NREL) and others. The researchers have expertise in a variety of fields including synthetic biology, quantum chemistry, and molecular dynamics.
 
"We have assembled an international team for the discovery and engineering of naturally occurring enzymes. Enzymes are biological catalysts that can perform incredible reactions, breaking down some of our toughest natural and man-made polymers,” explained Professor McGeehan, Director of the Institute of Biological and Biomedical Sciences in the School of Biological Sciences at Portsmouth.

"To protect their sugar-containing cellulose, plants have evolved a fascinatingly complicated material called lignin that only a small selection of fungi and bacteria can tackle. However, lignin represents a vast potential source of sustainable chemicals, so if we can find a way to extract and use those building blocks, we can create great things,” he added.

The team broke through a bottleneck in the lignin-degradation process. Now, it can be used to make new stuff. "It's an amazing material," McGeehan said, "cellulose and lignin are among the most abundant biopolymers on earth. The success of plants is largely due to the clever mixture of these polymers to create lignocellulose, a material that is challenging to digest."

Building block of plants: Lignin is seen here stained red in a cross-section of plant cells from an oak tree. / Credit: Berkshire Community College Bioscience Image Library

This enzyme family may help us break our dependence on fossil fuels by providing a new way to make consumables. 

"There is a long-standing phrase - you can make anything out of lignin except money - but by harnessing the power of enzymes, this is set to change. Using advanced techniques, from X-ray crystallography at the Diamond Light Source synchrotron to advanced computer modeling, we have been able to understand the detailed workings of a brand new enzyme system,” said first author Sam Mallinson, a graduate student in structural biology at the University of Portsmouth.

This new enzyme isn’t picky; it has the ability to work on many different chemicals, making it a ‘promiscuous’ enzyme.

"This new cytochrome P450 enzyme can degrade a lot of different lignin-based substrates. That's good because it means it can then be engineered to be a specialist for a specific molecule and we can evolve it further to push it in a certain direction,” Beckham noted. "We now have one of the most well-known, versatile, engineerable and evolvable classes of enzymes ready to go as a foothold for biotechnology to move forward and make the enzyme better."

 

Sources: AAAS/Eurekalert! Via University of Portsmouth, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 08, 2018
Cardiology
JUN 08, 2018
Interfering with Inflammatory Signals to Treat Arrhythmia
Part of the immune system has now been implicated in the development of atrial fibrillation (AF), the most common heart arrhythmia that leads to stroke, bl
JUN 24, 2018
Genetics & Genomics
JUN 24, 2018
Cell Division Ceases When CD36 Kicks in
In life, our cells experience a massive amount of turnover, on the order of billions every day. But as cells age, they stop dividing.
JUL 20, 2018
Genetics & Genomics
JUL 20, 2018
Nanoparticle-based Gene Therapy Cures Disease in Fetal Mice
Although CRISPR has grabbed a lot of headlines in recent years, it is not the only gene-editing game in town.
JUL 27, 2018
Microbiology
JUL 27, 2018
Making Accurate Assessments of the Environmental Impact of Pollution
Without the right experimental design, behavioral testing can easily produce the wrong results.
AUG 06, 2018
Genetics & Genomics
AUG 06, 2018
Mystery Solved: Modern Pygmies not Related to Ancient Ones
The isolation of islands can have a powerful effect on the genetics of the residents.
AUG 13, 2018
Cell & Molecular Biology
AUG 13, 2018
In a First, Stem Cell Therapy for Parkinson's in Human Patients
A clinical trial that is the first of its kind has been started in Japan.
Loading Comments...