JUL 12, 2018 6:20 PM PDT

Can This Be the Real Discovery of Sterile Neutrinos?

WRITTEN BY: Daniel Duan

It has been a few nerve-wracking years for particle physicists since the discovery of the Higgs boson in 2012 because the search for more novel elementary particles has turned out to be fruitless. At the world-famous physics institute CERN, despite the massive efforts devoted to upgrade and improve the performance of Large Hadron Collider in the last two years, no blockbuster findings were announced.

Meanwhile, on the other side of the Atlantic ocean, a team of physicists working at Fermilab's MiniBooNE (BooNE as Booster Neutrino Experiment) neutrino detector has just declared that they just made an incredible detection in June. Their data suggest a breakthrough discovery of the sterile neutrino, a hypothetic particle that is never a part of the standard model of physics.

Neutrinos are often considered as the "ghost" particles due to their unreadiness to interact with normal matter. They have a mass only one in half million of that of electrons and no electrical charge. That's why even though they are one of the most abundant particles in our universe, scientists have quite a hard time detecting them.

The "sterile" neutrinos take the elusiveness of the neutrinos to another level. In theory, they belong to a new "flavor" of neutrinos. In the standard model of physics, "flavor" refers to the species of an elementary particle. This flavor of neutrinos interacts only via gravity, unlike their cousins "active" neutrinos who become charged under the weak interaction.

It's worth knowing that this is not the first time scientists stumble upon hints of sterile neutrinos. In the 1990s, another experiment at Los Alamos, New Mexico detected an excess of neutrinos through particle bombardment. Some claimed was the first yet indirect proof of the existence of sterile neutrinos, because neutrinos were predicted capable of changing their flavor. Physicists at the MiniBooNE detector were hoping to replicate the earlier experiment and find similar results.

How did they do it? The researchers fired neutrino beams consisting primarily of muon neutrinos at a detector filled with 800 tons of mineral oil and lined with 1,280 photomultiplier tubes. What's with the lavish setup? The evidence of interaction between antineutrinos and electron neutrinos only appears as faint light flashes, which were recorded 2,437 times, 460 more than the researchers expected.

To cool the hype, some suggest this could merely be the result of a miscalculation. According to another study at the IceCube neutrino detector at the South Pole in 2016, no signature signal that matches sterile neutrinos was found among 100,000 neutrino events that were observed over a decade.

The potentially history-making paper was made public on the pre-print platform arXiv.

Source: PBS Space Time via Youtube

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 27, 2020
Chemistry & Physics
Pheromone Molecule at the Center of Global Locusts Crisis
AUG 27, 2020
Pheromone Molecule at the Center of Global Locusts Crisis
Since earlier this year, agriculture and food production in the developing world have been taking heavy damages from an ...
SEP 06, 2020
Chemistry & Physics
The fluid dynamics of pelagic snails' movement
SEP 06, 2020
The fluid dynamics of pelagic snails' movement
Warm water pelagic snails don’t get much attention, but they certainly should. The snails move between ocean surfa ...
OCT 09, 2020
Chemistry & Physics
Plastic-Eating Cocktail Could Help Establish Infinite Recycling
OCT 09, 2020
Plastic-Eating Cocktail Could Help Establish Infinite Recycling
There's no doubt that the current recycling system isn't efficient enough in handling the plastic wastes our soc ...
OCT 10, 2020
Chemistry & Physics
Imagining the sunspots of other solar systems
OCT 10, 2020
Imagining the sunspots of other solar systems
A recent study published in the Astrophysical Journal takes a new look at sunspots in order to understand stellar activi ...
OCT 25, 2020
Plants & Animals
Flexible Film Can Change Color Like Chameleon Skin
OCT 25, 2020
Flexible Film Can Change Color Like Chameleon Skin
Chameleons are well known for their ability to change the color of their skin to blend in with their surroundings, send ...
OCT 26, 2020
Chemistry & Physics
Fighting mesothelioma with gold nanotubes
OCT 26, 2020
Fighting mesothelioma with gold nanotubes
New research published in the journal Small details how gold nanotubes could be used to treat mesothelioma cancer. ...
Loading Comments...