SEP 18, 2019 9:21 AM PDT

Wild Wheat Genes are the Answer to Climate Change Food Shortage

WRITTEN BY: Annie Lennon

By 2050, the UN has estimated that wheat production needs to increase by 60% in order to feed the world’s population, estimated to reach around 9.6 billion. A hefty task considering current agricultural practices and climate change, researchers have found that wild varieties of food crops contain genetic mutations that may be able to cope with the changing climate. 

Over 28 years, researchers conducted a study following the adaptation of 10 wild populations of emmer wheat in Israel. Experiencing an overall environmental temperature increase of two degrees Celsius during the study, although some specimens in the study died out, others managed to adapt. 

According to Yong-Bi Fu, the lead author of the study, “We got some very exciting results...One of which is that we can demonstrate that over 28 years, and 28 generations, you can see the wild relative of the plant accumulate more genetic mutations, and we found that most of the population is still adaptable.”

Suggesting that this insight has helped in improving our understanding of how plants may adapt to future climate change, Dr. Fu added, “This mutation is crucial, and we can see that we need a lot of effort to protect and conserve the crop's diversity in the wild, natural population.”

When looking into factors that promoted the most genetic change among the crops, the researchers found that temperature changes was the major contributor. With some variation in adaptability expected, they noted that wheat populations 1 and 9 fared the best, showing the most genetic potential to adapt to ongoing global warming, whereas wheat populations 4,7 and 10 were more genetically vulnerable, displaying the highest mutational burdens. 

Although saying that their sample size was small and thus results may be inconclusive, they nevertheless praise their findings for demonstrating how evolutionary changes occur at the genetic, chromosomal, individual and population level as ever before in wheat. 

Thus, in a similar fashion to UK scientists developing ways to clone disease-resistant genes from wild wheat to create broad-spectrum resistance in domesticated crops, Dr. Fu and his team eventually plan to create a similar approach to duplicate climate-resistant genes from wild wheat to make domesticated versions more resilient to climate change.


 

Sources 

 

Kinver, Mark: BBC

Fu, Yong-Bi: PNAS

About the Author
  • Science writer with keen interests in technology and behavioral biology. Her current focus is on the interplay between these fields to create meaningful interactions, applications and environments.
You May Also Like
MAR 04, 2020
Genetics & Genomics
MAR 04, 2020
DNA Fragments and Cartilage Recovered From 75-Million-Year-Old Dinosaur Bones
An international team of researchers has analyzed cartilage from a baby duckbilled dinosaur, and they have identified bi ...
MAR 30, 2020
Microbiology
MAR 30, 2020
The Microbial Communities That Form on the Tongue
Scientists used a fluorescent imaging tool to analyze how bacteria grow on the human tongue.
APR 04, 2020
Cannabis Sciences
APR 04, 2020
Only 50% Cannabis Genome Has Been Mapped
As more and more jurisdictions are decriminalizing cannabis usage, its popularity both for medicinal and recreational us ...
APR 05, 2020
Genetics & Genomics
APR 05, 2020
Gene Variants Impact Natural Sunscreen & Vitamin D Levels
Vitamin D deficiencies have been linked to a variety of chronic diseases including bone disorders and heart disease.
APR 17, 2020
Genetics & Genomics
APR 17, 2020
Unraveling the Genetics of Schizophrenia
Whole genome sequencing on schizophrenia patients reveals variations that affect genomic architecture are more common in ...
MAY 07, 2020
Genetics & Genomics
MAY 07, 2020
Will the Next Outbreak Come From Cattle?
Many species of Campylobacter bacteria are infectious and can cause a disease called campylobacteriosis in animals and p ...
Loading Comments...