OCT 31, 2017 3:33 PM PDT

Role of Parkinson's Disease Gene is Found

WRITTEN BY: Carmen Leitch

Mutations in the LRRK2 gene have been identified as the most common genetic cause of late-onset Parkinson’s disease. Researchers have shed light on the normal function of the gene, which has not been clear. It was found to be critical for the survival of neurons in the brain that contain dopamine, cells which are impacted by Parkinson’s. This new work, reported in Neuron, may help create better treatments for the disease.

Understanding normal brain function will help us develop better treatments for diseases of the brain / Image credit: Pixabay

"Since its discovery, researchers have been trying to define LRRK2 function and how mutations may lead to Parkinson's disease," said Beth-Anne Sieber, Ph.D., program director at the National Institute of Neurological Disorders and Stroke (NINDS). "The findings in this paper emphasize the importance of understanding the normal role of genes associated with neurodegenerative disorders."

In the brain, LRRK2 hangs out around LRRK1, a related protein. When only LRRK2 is mutated, Parkinson's disease symptoms can eventually result, and brain pathology can be identified in affected humans as they grow older. But in mouse models, a mutation or loss of LRRK2 did not cause the dopamine-producing neurons to die. The investigators suspected that is because LRRK1 acts to compensate or fill in for LRRK2 during the relatively brief lifespan of a mouse, which is only about two years.

"Parkinson's-linked mutations such as LRRK2 have subtle effects that do not produce symptoms until late in life. Understanding the normal function of these types of genes will help us figure out what has gone wrong to cause disease," explained Jie Shen, Ph.D. Shen is the Director of the NINDS Morris K. Udall Center of Excellence for Parkinson's Disease at Brigham and Women's Hospital and the senior author of this study.

Shen and her team created mice that lacked LRRK1 and LRRK2 to learn more about the normal roles of these genes. In the modified mice, dopamine-containing neurons were found to be lost from areas of the brain, in a manner consistent with Parkinson’s disease and starting when the mice were about 15 months old. After analyzing the affected brain cells, the scientists saw a hallmark of Parkinson’s disease; a protein called α-synuclein was accumulating, and pathways that dispose of cellular junk were dysfunctional. Other dopamine-containing neurons began to look like they were self-destructing, or becoming apoptotic. 

"Our findings show that LRRK is critical for the survival of the populations of neurons affected by Parkinson's disease," noted Dr. Shen.

Because it has been assumed that LRRK mutations make the protein overactive, therapeutics have tended to focus on inhibition of LRRK2. But this may not be a great idea.

"The fact that the absence of LRRK leads to the death of dopamine-containing neurons suggests that the use of inhibitory drugs as a treatment for Parkinson's disease might not be the best approach," explained Dr. Shen.

Next, Shen and her team are deleting the LRRK1 and 2 genes from only neurons that contain dopamine. That will allow them to assess how that affects the brain, and they will get around the dire consequences and shortened lifespan seen when the genes are removed from the whole body of the mouse.

Learn more about Parkinson's disease and the LRRK2 gene from the video.

Sources: AAAS/Eurekalert! Via NINDS, Neuron

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 26, 2021
Genetics & Genomics
A Region of Non-Coding DNA That May Help Regulate Telomere Length is ID'ed
JUL 26, 2021
A Region of Non-Coding DNA That May Help Regulate Telomere Length is ID'ed
Many types of cells have to be replenished continuously throughout our lives, and the genome in the nucleus of those cel ...
AUG 01, 2021
Microbiology
Some Insects Can Fight Off Parasites with Genes From a Virus
AUG 01, 2021
Some Insects Can Fight Off Parasites with Genes From a Virus
The genetic action in this 'evolutionary arms races' involves gene swapping and three organisms.
AUG 29, 2021
Genetics & Genomics
Archaeological Site Reveals DNA Belonging to an Ancient Human Relative
AUG 29, 2021
Archaeological Site Reveals DNA Belonging to an Ancient Human Relative
The Wallacean Islands served as stepping stones for the first modern humans as they migrated from Eurasia to Oceania, pr ...
SEP 07, 2021
Microbiology
Viral Ancestor of SARS-CoV May Date Back 22,000 Years
SEP 07, 2021
Viral Ancestor of SARS-CoV May Date Back 22,000 Years
The world has rapidly become familiar with sarbecoviruses, two of which jumped to humans in recent years. The first was ...
SEP 12, 2021
Genetics & Genomics
Revealing Genes That Escape X Chromosome Inactivation
SEP 12, 2021
Revealing Genes That Escape X Chromosome Inactivation
Some diseases impact men, or women, at different rates or severities, with different symptoms or varied ages of onset; t ...
SEP 17, 2021
Genetics & Genomics
Ancient Humans Rarely Chose Cousins as Mates
SEP 17, 2021
Ancient Humans Rarely Chose Cousins as Mates
Ancient families that lived together were unlikely to have mated with one another, new research has suggested. Scientist ...
Loading Comments...