JUN 05, 2017 2:54 PM PDT

Why Can't the Heart Repair Itself?

WRITTEN BY: Kara Marker

Why can’t cardiac tissue repair itself? Maybe if Baylor College of Medicine scientists can figure it out, they can design therapeutics to help heart cells become self-renewing, capable of healing conditions like muscular dystrophy all on their own.

Fully functional hiPSC-derived cardiomyocytes. Credit: Pluriomics

Muscular dystrophy (MD) can influence skeletal muscles all over the body, which often leads to heart disease. This type of MD condition can be treated with “cardioprotective medical therapies,” but overall treatment options are limited, and there is no cure. Results from this study could provide insight for new MD treatments, as well as for numerous other disorders relating to the destruction of the heart’s cells.

"Patients with muscular dystrophy can have severe reduction in cardiac function," explained senior author of the new Baylor study, Dr. James Martin. "Our findings may help to design medicines to slow down cardiac decline in muscular dystrophy by stimulating cardiomyocyte proliferation. In order to do that, we need more research to understand cardiomyocyte growth control pathways in greater detail."

Martin and his team began studying the interaction between two heart cell pathways, the Hippo pathway, which is known to inhibit the renewal of adult cardiomyocytes, and the dystrophin glycoprotein complex (DGC) pathway, which is vital for normal heart cell function. Mutations in the DGC pathway have been linked to MD development in the past. 

Researchers were looking for any connection between hippo and DGC that might explain why heart cells cannot heal themselves. They studied many potential interactions in mouse models by genetically engineered mice to lack various genes from either or both pathways: What combination of gene knockouts altered the heart’s ability to repair itself?

They found that a DGC protein, dystroglycan 1, directly binds a Hippo protein, Yap, and that this binding inhibits the proliferation of cardiomyocytes. The connection between these two “yin and yang” pathways is an exciting new finding for any scientist interested in self-renewal in the heart tissue.

"The discovery that the Hippo and the DGC pathways connect in the cardiomyocyte and that together they act as 'brakes' or stop signals to cell proliferation opens the possibility that by disrupting this interaction one day it might be possible to help adult cardiomyocytes proliferate and heal injuries caused by a heart attack, for example," Martin explained. 

The present study was published in the journal Nature.

 

Sources: Circulation: Cardiovascular Imaging, Baylor College of Medicine

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 06, 2021
Cancer
A New Biomarker to Personalize Breast Cancer Therapy
SEP 06, 2021
A New Biomarker to Personalize Breast Cancer Therapy
The American Cancer Society estimates that over 280,000 women in the United States will be diagnosed with breast cancer ...
SEP 03, 2021
Technology
Bionic Arm Effective at Restoring "Natural" Arm Function in Amputees
SEP 03, 2021
Bionic Arm Effective at Restoring "Natural" Arm Function in Amputees
A research team at the Cleveland Clinic has developed a new mechanical arm that could help people who have received arm ...
SEP 05, 2021
Cardiology
Eating Walnuts & Pecans Can Help Lower 'Bad' Cholesterol
SEP 05, 2021
Eating Walnuts & Pecans Can Help Lower 'Bad' Cholesterol
Some nuts, especially walnuts, have high levels of healthy fats like Omega-3. New research reported in Circulation has s ...
SEP 08, 2021
Plants & Animals
Are the skeletons of macaque hybrids distinct?
SEP 08, 2021
Are the skeletons of macaque hybrids distinct?
New research sheds insight into the evolution of the human pelvis by using macaque hybrid models.
SEP 14, 2021
Technology
Dental Implant Produces Its Own Electricity And Fights Bacteria
SEP 14, 2021
Dental Implant Produces Its Own Electricity And Fights Bacteria
The use of dental implants offers a long term, effective treatment approach for lost or missing teeth compared to method ...
SEP 16, 2021
Drug Discovery & Development
A shot for sore eyes: a novel injectable drug to treat age-related vision loss
SEP 16, 2021
A shot for sore eyes: a novel injectable drug to treat age-related vision loss
According to the Population Reference Bureau, 40 million people in the United States are aged 65 and older. This nu ...
Loading Comments...