SEP 06, 2015 02:18 PM PDT

Explaining Infant Epilepsy

What causes severe early infant epilepsy? Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden believe that mutations in the gene encoding the protein KCC2 might be responsible for the disease, confirming an earlier theory. The findings were published in the journal Nature Communications and reported in Drug Discovery & Development
Gene mutations cause severe early infant epilepsy.  
Large-scale genetic analyses of a family with two affected children at SciLifeLab in Stockholm identified mutations in the gene encoding the transport protein KCC2. Collaborating with scientists at the University College London, the researchers identified another family with children carrying mutations in the same gene. Two of the children in each family exhibited similar symptoms connected to a severe variant of infant epilepsy with Migrating Partial Seizures of Infancy (MPSI).
 
As Anna Wedell, senior physician at Karolinska University Hospital and professor at the Department of Molecular Medicine and Surgery at Karolinska Institutet, explained, "Epilepsy occurs in many different forms. Earlier associations with KCC2 have been observed, such as a down-regulation of the protein after brain damage that increases the tendency for seizures, but firm evidence for this disease mechanism has been lacking so far. Through our discovery we have been able to prove that a defective function of the KCC2 protein causes epilepsy and hence that an imbalance in the brain's chloride ion regulation system can be the reason behind the disease. The next step is to investigate to which extent this imbalance occurs in more common variants of epilepsy."

KCC2 makes up a chloride channel specifically localized in the brain. It has demonstrated that it plays an important role in synaptic inhibition by maintaining a low concentration of chloride ions inside the neurons. Usually, the amount of KCC2 increases shortly after birth, which causes the signal substance GABA to switch from being stimulating to being inhibitory.
 
According to Dr. Wedell, "Mutations in the gene encoding KCC2 prevent this switch, which makes GABA remain stimulatory, incapable of inhibiting the signals of the brain. The neurons then discharge at times, when they normally should not, giving rise to epilepsy."
 
By conducting detailed investigations of cells expressing both the normal and the mutated forms of KCC2, the scientists showed that the identified mutations disrupted chloride ion regulation and that an imbalance in this system causes severe infant epilepsy, a potentially treatable disease.
 
Dr. Wedell concluded, "Clinical trials are ongoing with a drug that, if successful, will compensate for the disrupted regulation and ameliorate the disease in small children with epilepsy.”
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 22, 2019
Genetics & Genomics
SEP 22, 2019
Research Reveals Role of Leptin in Human Appetite
  A drop in leptin concentration, a hormone released from fat stores, was vaguely understood to influence increased appetite.  New research out o...
SEP 22, 2019
Technology
SEP 22, 2019
Motorized prosthetic arm can sense touch, move with your thoughts
Picking up an egg without crushing it seems like an easy task for anyone—but for Keven Walgamott, who lost his left hand and part of his arm from a m...
SEP 22, 2019
Genetics & Genomics
SEP 22, 2019
How Much Do Genes Influence Sexuality?
A recent study has shown that there is no sigular ‘gay gene’ (Boyd: 2019). Instead however, it seems that there are multiple genetic factors th...
SEP 22, 2019
Neuroscience
SEP 22, 2019
Lab-grown mini brains make humanlike 'brain waves'
When a fetus reaches six months old, it starts to produce electrical signals resembling brain waves. Now, we know that clusters of lab-grown human brain ce...
SEP 22, 2019
Drug Discovery & Development
SEP 22, 2019
How Does Ketamine Treat Depression?
In recent years, ketamine has received growing interest for its neuroprotective effects. Known to alleviate symptoms of depression in just hours whereas co...
SEP 22, 2019
Neuroscience
SEP 22, 2019
Alzheimer's to be Diagnosed from Pupil Dilation
Researchers from the University of California have found a low-cost, non-invasive method to aid in diagnosing Alzheimer’s Disease (AD) before cogniti...
Loading Comments...