MAY 24, 2017 09:00 AM PDT

Fully Automated 3D Cell Culture for Human Cells

C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Professor and Associate Director of Clinical Chemistry and Toxicology, Univerisity of Virgina School of Medicine
    Biography
      Dr. Robin Felder is a Professor of Pathology and Associate Director of Laboratory Medicine at the University of Virginia-UVA, and is Chair of Medical Automation.org. Dr. Felder received his PhD in Biochemistry from Georgetown University. He has published over 300 papers, reviews, and chapters, and co-edited 3 textbooks on medical automation. He has been awarded 27 patents and has founded 9 biotech companies, including 2 non-profit organizations including the Association for Laboratory Automation (SLAS) (and its journal JALA) as well as Medical Automation.org. He has received numerous awards including the Engelberger Robotics Award, UVA's Innovator of the Year Award, and the Annual Research Awards from the American Association for Clinical Chemistry (AACC), and National Academy for Clinical Biochemistry (NACB).

    Abstract:

    The consistent and optimized production of living human cells for drug discovery and regenerative medicine faces many challenges including the need for cost effective large scale expansion, improved representation of in vivo cellular physiology, and the ability to achieve reproducible data and/or cellular products.  In order to achieve these goals there has been an evolution in the methods used to culture cells involving the use of 3D approaches that include the growth of cells in and on biomimetic substrates, optimization of cell culture media, and exposing cells to shear forces and oxygen tension that more closely mimics the in vivo environment.  In addition, in order to make these new 3D processes more cost effective there is an increasing interest to fully automate the cell culture process.  However, many new in vitro 3D cell culture methods, which provide improved physiologically and biologically relevant cellular phenotypes neither lend themselves to automation nor allow the process to be scaled for large cell biomass production.  We have designed and are building a fully automated 3D cell culture robotic system that allows for parallel or random access processing of many cell lines each sourced from unique individuals.  This next generation cell culture robot will allow cell based assays on biologically diverse populations of cells in order to test lead compounds for their biodiverse effects (varying effective doses and toxicology).  


    This presentation will discuss the current 3D cell culture systems and their suitability for automation.  Data will be shown demonstrating the benefits of each automated 3D cell culture process in terms of cell morphology and function. Each system will be evaluated for its cost/benefit in terms of biological relevance, yield, and quality metrics. Modern 3D cell culture techniques will be objectively discussed in the context of creating improved standards for primary/stem cell production and screening.


    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    JUN 20, 2018 10:00 AM EDT
    C.E. CREDITS
    JUN 20, 2018 10:00 AM EDT
    DATE: June 20, 2018TIME: 07:00AM PDT, 10:00AM EDTIntroducing GE’s New Lyo-StableTM service. Sepsis is one of the top challenges facing hospitals in terms of clinical outcomes...
    JUN 26, 2018 06:00 AM PDT
    C.E. CREDITS
    JUN 26, 2018 06:00 AM PDT
    Date: June 26, 2018Time: 6:00 a.m. PDT, 9:00 a.m. EDT, 1500 CEST Today’s hematology analyzers employ various methods for enumerating platelets. These methods include: e...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    JUN 05, 2018 06:30 AM PDT
    C.E. CREDITS
    JUN 05, 2018 06:30 AM PDT
    DATE: June 5, 2018TIME: 06:30AM PDT, 3:30PM CEST Viscous liquids are a challenge in every lab that deals with them. Depending on how viscous a liquid is, pipetting is either...
    Loading Comments...