FEB 27, 2019 10:30 AM PST

Developing Precision Combination Therapies to Overcome Evolution of Therapeutic Resistance

Presented at: Drug Discovery 2019
Speaker

Abstract

Recent clinical successes in cancer genome-inspired personalized medicine have been a major breakthrough in drug discovery. However, 98% of the patients have an incomplete therapeutic response. These patients with residual disease, progress upon therapy and develop acquired resistance and derive limited survival. Tumors are proficient at developing resistant to therapies, and the molecular mechanisms of therapeutic resistance are critical to pinpointing strategies to prevent these escape routes and to obtain long-lasting clinical responses. Using clinical specimen of disease progression, a majority of genetic alterations have been characterized and shown to co-exists upon acquired resistance, hence targeting single genetic driver would be futile to combat poly-clonal resistance. Therefore, there is an increasing need to find a targetable approach to prevent the evolution of resistance and yield a complete therapeutic response to abrogate the residual disease.

To address this, we have developed the in-vitro models of acquired resistance (AR models). We further used these AR models to identify therapeutic strategies that could overcome resistance. This drug screen revealed that aurora kinase inhibitors exhibited strong synergy with EGFR-TKI to abrogate cell proliferation and induced potent apoptosis. Furthermore, long-term pharmacological inhibition of Aurora pathway forestalled the emergence of resistance, inhibit the growth of residual disease and abrogate the acquired resistance. Since overactivation of aurora pathway was known to cause mitotic errors and polyploidy, we surveyed for mitotic defects induced by EGFR-TKI treatment and in acquired resistant cells. EGFR-TKI treatment resulted in a marked accumulation of errors in centrosome biogenesis, spindle assembly, and chromosome segregation resulting in polyploid cells with abnormal DNA content. These errors were present in acquired resistant lines indicating persistent mitotic stress is a feature of EGFR inhibition. Exogenous overexpression of AURKA or TPX2 in parental cells phenocopied these defects, implying causation. Therefore, we conclude that the abnormal activation of TPX2/AURKA leaves a signature of defects associated with mitotic stress, a prominent feature of genomic instability. Our results indicate that heightened TPX2/AURKA activation is required for tumor cells to transition out of sensitive cell state and persist upon drug pressure. This deregulation creates a highly genomically unstable environment and gives rise to genomic heterogeneity providing a fertile ground for the subsequent survival of fittest sub-clones.  

Learning Objectives: 

1. Define the limitation of therapeutic resistance in drug discovery
2. Design the strategy to overcome resistance
3. Identify basis of resistance evolution


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
MAR 30, 2022 6:00 AM PDT
MAR 30, 2022 6:00 AM PDT
Targeted NGS has been instrumental in helping the healthcare community deliver on the promise of precision medicine. The Ion Torrent Genexus Integrated Sequencer has enabled targeted genomic...
MAR 16, 2022 8:00 AM PDT
C.E. CREDITS
MAR 16, 2022 8:00 AM PDT
Date: March 16, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CET) Handling of potent and/or hazardous substances is commonplace in sev.....
APR 26, 2022 7:00 AM PDT
C.E. CREDITS
APR 26, 2022 7:00 AM PDT
Date: April 19, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) High-content (HC) phenotypic profiling approaches are a powerful tool to study the effect of biological, genetic, and ch...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
APR 28, 2022 8:00 AM PDT
APR 28, 2022 8:00 AM PDT
Date: April 28, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Human pluripotent stem cells (PSCs) and their derivatives hold great potentials in...
FEB 27, 2019 10:30 AM PST

Developing Precision Combination Therapies to Overcome Evolution of Therapeutic Resistance

Presented at: Drug Discovery 2019


Show Resources
Loading Comments...
Show Resources