SEP 10, 2020 10:00 AM PDT

Keynote Presentation: Squeezing out understanding from sequences: Genome to Phenome Connections in Viruses of Microbes

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Fellow American Academy for Microbiology, Deputy Dean and Assoc. Dean for Research & Graduate Education, College of Agriculture & Natural Resources, University of Delaware
    Biography

      Eric Wommack graduated Summa Cum Laude from Emory University with bachelor degrees in Biological Sciences and Economics. Realizing that the number of economic theories always exceeds the number of economists and ignoring significant opportunity costs, he chose the more glamorous, albeit indigent, path of graduate work in the life sciences.  After graduating from Emory he was awarded a Bobby Jones Fellowship to pursue a M.Sc. in Physiology under the mentorship of Prof. Ian Johnson at the University of St. Andrews, Scotland. After obtaining his M.Sc. and raising his golf game from abysmal to lousy, he left St. Andrews and ultimately obtained a Ph.D. exploring the role of viruses in marine ecosystems under the mentorship of Prof. Rita R. Colwell at the University of Maryland.  He was awarded a National Research Council fellowship for post-doctoral work investigating microbial degradation of chiral pesticides under the mentorship of David Lewis (U.S. Environmental Protection Agency) and Prof. Robert Hodson at the University of Georgia.  He is now a Full Professor at the University of Delaware and the Deputy and Associate Dean for Research and Graduate Programs in the College of Agriculture and Natural Resources.  In the lab he subjects his students to the endless toil of digging through metagenomic sequence data to expand understanding of the biological capabilities and ecological roles of viruses within natural ecosystems. 


    Abstract

    Enigmatic and often vilified, viruses are now known to play important and possibly indispensable roles in the biology and ecology of cellular organisms. Evidence of viral impacts are everywhere. Animal and plant genomes are littered with genes of viral origin. Ecosystems contain large numbers of viruses, an estimated global population of 10e31 individuals, dwarfing co-occurring microbial abundances. Most viruses observed within ecosystems infect microbes. During infection, viruses can alter the phenome of host cells in ways that change the population biology of microbial communities and the flow of nutrients and energy within ecosystems. While we have a high-level view of viral impacts, the details are largely a mystery. These details matter as viral impacts on ecosystems are the net result of hundreds or thousands of interacting populations of viruses and microbial hosts. The mechanistic underpinnings of viral effects on ecosystems can only be fully appreciated through a greater understanding of the phenomic features of viral-host interaction networks. Genomic data have shown that viral genetic diversity is vast and largely unknown. Often less than half of the genes within a dsDNA viral genome can be assigned a function based on homology. This situation is worse for viral metagenomes (viromes). Predicting important phenomic features of an unknown virus based on genomic information alone is not currently possible.  However, we have identified three genes — DNA polymerase A, ribonucleotide reductase (RNRs), and chaperonins — which appear to demonstrate particularly strong links to the phenomic characteristics of viruses of microbes (VoMs).  Mutations within PolA appear to be predictive of whether a virus has a lytic or lysogenic life cycle and polA genes seem to be critical in determining the broader suite of genes involved in viral genome replication.  The class and sub-group of RNR genes carried by a virus appear to predict the environmental conditions most favorable to lytic viral production.  The propensity of a virus to carry chaperonin genes may predict its genome size and its capability for altering, more generally, the protein folding machinery within infected cells.  Viral chaperonins within viromes have also demonstrated the existence of unknown viruses infecting marine archaeal populations.  Ultimately, uncovering genome to phenome links within ecologically-important VoM-host systems will improve the predictive utility of viral genomic and metagenomic data for advancing scientific understanding on the role of viruses within ecosystems.

    Learning Objectives:

    1. Give examples of how viral infection influences ecosystem processes

    2. How might the biochemistry of a replication enzyme inform us about the biology of a virus

    3. Why are metagenome data critical to building genome to phenome hypotheses for viruses


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    JUL 22, 2020 10:00 AM PDT
    C.E. CREDITS
    JUL 22, 2020 10:00 AM PDT
    DATE: July 23, 2020 TIME: 10:00 am PDT The SARS-CoV-2 pandemic has taken a toll on many sectors of the medical community. As the pandemic took a grip on the laboratory, the need for diagnost...
    JUN 09, 2020 10:00 AM PDT
    C.E. CREDITS
    JUN 09, 2020 10:00 AM PDT
    DATE: June 9, 2020 TIME: 10:00am PT, 1:00pm ET The presentation will first discuss sepsis as a disease and then explain the importance of performing diagnostic tests in the clinical labora...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    Loading Comments...
    Show Resources