MAY 11, 2017 6:00 AM PDT

Precision Medicine in Juvenile Psychosis

Speaker
  • Instructor in Pediatrics, Boston Children's Hospital
    Biography
      Catherine Brownstein is a geneticist and toxicologist with eleven years experience in human genetics and three years in applying patient-reported outcomes to the study of disease. She has been project manager of the Research Sequencing Program at Boston Children's Hospital since 2011. Her research career includes training in genetics, medical genetics, epidemiology, and environmental health. She has also completed MPH at the Yale School of Epidemiology and Public Health and worked as a toxicologist at the Massachusetts Department of Public Health. Before coming to BCH and HMS, she spent four years creating online patient communities for individuals with chronic or terminal diseases.

    Abstract

    Boston Children’s Hospital is developing the infrastructure needed for large-scale psychiatric research and treatment discovery.   The Manton Center for Orphan Disease Research and the BCH Developmental Neuropsychiatry Program seek to develop therapeutics to prevent the development of schizophrenia in at-risk children.   Precision Medicine is employed by identifying causative mutations in the youngest patients presenting with psychosis, creating neuronal cell cultures and models of neural networks expressing the mutations and using these to screen for novel therapeutics. The study of rare Mendelian forms of Juvenile Psychosis is an effective way to discover new candidate genes for the condition.  As an example of the progress being made, we describe several case studies, including a patient with onset of command auditory hallucinations and behavioral regression at age 6 in the context of longer standing selective mutism, aggression, and mild motor delays. Sequencing revealed a previously unreported heterozygous de novo mutation at c.385G>A in ATP1A3. This gene codes for a neuron-specific isoform of the catalytic alpha subunit of the ATP-dependent transmembrane sodium-potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of Alternating Hemiplegia of Childhood and Rapid-onset Dystonia Parkinsonism.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    DEC 10, 2019 9:00 AM PST
    C.E. CREDITS
    DEC 10, 2019 9:00 AM PST
    DATE: December 10, 2019TIME: 9:00am PST, 12:00pm EST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid dif...
    Loading Comments...
    Show Resources
    Attendees
    • See more