APR 06, 2016 1:30 PM PDT

Validation and Implementation of Whole-Exome Sequencing to Guide Precision Cancer Care

Speaker

Abstract


Cancer remains the second leading cause of death in the United States.  Most tumors arise from a myriad of genetic changes that dysregulate cell growth and prompt survival.  Identification of genetic alterations by next generation sequencing (NGS), using either targeted sequencing or whole exome sequencing (WES) has become the standard of care in genomic medicine.  WES applies NGS technology to identify genetic variants in the coding regions (exons) of genes, harboring the majority of disease causing-mutations.  Using WES, it is currently feasible to not only detect a rapidly growing set of known clinically relevant mutations, but also identify novel or unexpected important variations, including constitutional mutations in cancer predisposing genes.  Thus far, the use of WES in cancer has largely taken place in the setting of large research studies.  Integration of WES into precision cancer care has lagged behind primarily due to technical challenges such as small and poor quality (FFPE) tissues and low-tumor purity samples that have not been rigorously validated in the clinical setting.  Another challenge is the analytical and computational approaches used to detect the wide-spectrum of mutations and genes queried by WES, which requires a comprehensive validation procedure to demonstrate the ability of the test to identify actionable mutations with high accuracy and at an acceptable analytical sensitivity.  The third challenge is a clinical challenge to attain meaningful interpretations of the genomic data which then can be used for patient care.  While these challenges are well recognized and despite a wide range of assays and platforms available, WES application in cancer has not yet been validated for the clinical laboratory and has not been fully characterized in the literature with regard to the analytic and clinical validity of the testing and the various types of relevant mutations.  The few existing guidelines given by professional societies give only high-level directions for implementing NGS testing geared primarily towards the use of targeted panels rather than WES.  By all accounts, New York State-Department of Health (NYS-DOH) requirements are among the most rigorous guidelines yet published and are likely to serve as a paradigm for suggested future type of guidelines that might be required by the Food and Drug Administration (FDA).  These efforts are also in line with the new precision medicine initiative announced by U.S. President Obama with the intent to bring us closer to curing cancer and give all of us access to a more personalized and genomic-driven medicine.
   This presentation describes the development and analytical characteristics of NYS-DOH approved clinical exome cancer test suitable for simultaneous detection of somatic dingle nucleotide variants (SNVs), indels and copy number alterations (CNAs) using the Agilent HaloPlex capture platform and the Illumina HiSeq2500 system for sequencing.  Initial validation has focused on actionable mutations in five principal, clinically relevant genes and according to NYS-DOH guidelines.  The automated computational framework for data analysis, variant interpretation and reporting is also discussed. 

The objectives of this presentation are:

  • To describe the development and analytical characteristics of a New York State-Department of Health (NYS-DOH) approved clinical Exome Cancer Test suitable for simultaneous detection of somatic single nucleotide variations (SNVs), indels and copy number alterations (CNAs). 
  • To discuss the automated computational framework for data analysis, variant interpretation and reporting of whole exome sequencing (WES) data, using examples of clinical cases and reporting of WES results. 

Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
MAR 18, 2021 8:00 AM PDT
C.E. CREDITS
MAR 18, 2021 8:00 AM PDT
DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
APR 06, 2016 1:30 PM PDT

Validation and Implementation of Whole-Exome Sequencing to Guide Precision Cancer Care


Specialty

Finabio

Dna Sequencing

Personalized Medicine

Clinical Diagnostics

Immunity

Cancer Diagnostics

Immunotherapy

Bioinformatics

Flow Cytometry

Health

Immuno-Oncology

Research And Development

Gene Expression

Dna

Big Data

Geography

North America33%

Asia33%

Europe33%

Registration Source

Website Visitors100%

Job Title

Student50%

Medical Laboratory Technician50%

Organization

Ambulatory Care33%

Manufacturer - Other33%

Academic Institution33%


Show Resources
Loading Comments...
Show Resources