AUG 06, 2015 11:18 PM PDT

Regulating Tumor Growth

WRITTEN BY: Ilene Schneider
How do tumors grow, and how can they be stopped? A collaborative study between Sanford Burnham Prebys Medical Discovery Institute (SBP) and the Argonne National Laboratory may bring more clarity to those questions.
DLM promotes communication.
The scientists used a highly specialized X-ray crystallography technique to solve the protein structure of hypoxia-inducible factors (HIFs), considered critical regulators of a tumor's response to low oxygen (hyopoxia). The research, published in the journal, Nature, and reported in Drug Discovery & Development, helps scientists in the quest for new drugs to treat tumors by cutting off their supply of oxygen and nutrients (http://www.dddmag.com/news/2015/08/scientists-solve-structure-important-protein-tumor-growth?et_cid=4720282&et_rid=45505806&type=cta).

As Fraydoon Rastinejad, Ph.D., professor in the Metabolic Disease Program at SBP, explained, "For the first time, we have solved the structures of both HIF1-alpha and HIF2-alpha complexed with the ARNT subunit, a configuration required for HIF functionality. Visualizing these multi-domain structures helps us understand their drug binding capabilities and takes us further toward the goal of developing drugs that inhibit the tumor promoting effects of HIFs."

HIF proteins regulate genes that are important to the progression of a broad range of tumors, and altering their activity could be a promising approach for cancer therapy. While there have been major efforts to find drugs to inhibit HIF pathways, the only drug candidates to emerge from these efforts have been those that bind to another class of proteins called PHDs. PHD proteins regulate HIF activities, and there are many PHD inhibitors currently in clinical trials for anemia, chronic kidney disease, stroke and cancer.

According to an article in the Journal of Cell Biochemistry [2013 May;114(5):967-74. doi: 10.1002/jcb.24438, HIFs, angiogenesis, and cancer. Yang Y, Sun M, Wang L, Jiao B], "Tumor hypoxia was first described in the 1950s by radiation oncologists as a frequent cause of failure to radiotherapy in solid tumors. Today, it is evident that tumor hypoxia is a common feature of many cancers and the master regulator of hypoxia, hypoxia-inducible factor-1 (HIF-1), regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy. Although the tumor hypoxia response mechanism leads to a multitude of downstream effects, it is angiogenesis that is most crucial and also most susceptible to molecular manipulation. The delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF-1 in the regulation of angiogenic growth factors" (http://www.ncbi.nlm.nih.gov/pubmed/23225225).

Rastinejad explained that the new study "advances efforts to find new drugs that bind to HIF directly, rather than PHDs. We identified five different pockets in the architecture of the HIF complexes, all of which may be used for targeting small-molecule inhibitors. These drugs could conceivably inhibit HIF functions by reducing their stability, their ability to interact with other protein partners, and by altering mechanisms critical for their function."

Drugs that inhibit HIFs may be able to treat solid tumors. These cancers outgrow their blood supply and grow starved for oxygen, triggering HIFs to turn on genes that regulate many cancer cell survival pathways. The pathways include angiogenesis, erythropoiesis, increased expression of genes associated with anaerobic metabolism and metastasis.

Rastinejad concluded, "Our next step is to analyze a large number of patient samples with mutations in HIF proteins. We'd like to see where on the protein architectures these mutations occur, and how they manifest into HIF functional aberrations,". "Such mutations will offer a powerful glimpse into the structure-function activities of HIFs, and help us figure out how they turn genes on and off. The insights we make into the structure, function, and regulation of HIFs may also progress the development of treatments for a range of disease states beyond cancer, including heart disease, fatty liver, diabetes, and inflammatory diseases."
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 17, 2020
Cardiology
Can Grape Polyphenol Extracts prevent Cardiotoxicity?
SEP 17, 2020
Can Grape Polyphenol Extracts prevent Cardiotoxicity?
One of the biggest issues with chemotherapy treatments is their inherent toxicities. Most chemotherapy drugs are toxic t ...
OCT 28, 2020
Cancer
Protecting the Head and Neck from Off Target Radiation
OCT 28, 2020
Protecting the Head and Neck from Off Target Radiation
Radiotherapy alone or with chemotherapy is the go-to treatment for head and neck cancers. Unfortunately, head and neck t ...
NOV 05, 2020
Immunology
Awakening Ancient DNA to Kill Cancer
NOV 05, 2020
Awakening Ancient DNA to Kill Cancer
In a recent study published in Nature, scientists from the University of Toronto described the discovery of ancient DNA ...
NOV 09, 2020
Genetics & Genomics
Potential Problems with Liquid Biopsies
NOV 09, 2020
Potential Problems with Liquid Biopsies
Liquid biopsies are tests that look for biomarkers in the blood, which can help inform the treatment of cancer. The tool ...
NOV 26, 2020
Clinical & Molecular DX
Routine Diagnostic Tests Linked to a 59 Percent Increase in Testicular Cancer Risk
NOV 26, 2020
Routine Diagnostic Tests Linked to a 59 Percent Increase in Testicular Cancer Risk
New research has revealed that exposure to radiation from diagnostic procedures such as X-rays could contribute to an el ...
DEC 02, 2020
Cancer
Investigating the Active Components of an Herbal Mushroom
DEC 02, 2020
Investigating the Active Components of an Herbal Mushroom
When people think of traditional medicine, often what comes to mind are the old herbal medical practices in Asian countr ...
Loading Comments...