MAY 21, 2018 12:00 PM PDT

Epigenetics & Cancer: DNA Modification Impacts

More and more research is going into stopping cancer and other diseases before they start.  That is the basis for public health areas like traditional epidemiology; however, epigenetics is a newer approach beginning to have a foothold in disease prevention and early diagnosis with the goal of catching disease warnings before physiological symptoms manifest themselves.

Epigenetics Fundamentals

Epigenetics is the study of gene expression changes through biological modification rather than through alteration of genetic code.  Similar to genotype vs phenotype, one deals with what your genetic code actually is versus how that genetic code is expressed on the outside.  The study of these changes includes three main systems of heritable modifications including DNA methylation, chromatin remodeling, histone modification, and non-coding RNA associated gene silencing.  Epigenetics, as a field of study, began in the mid-twentieth century with the aim of combining genetics and developmental biology together.  The term “epigenetics” was actually coined back in 1942 by Conrad Waddington based on the Greek word “epigenesis” which describes the impact of genetic expression on development.  Waddington studied Drosophila under environmental stress to try to explain particular phenotypic changes observed compared to those not exposed to stressors.

Environmental & Lifestyle Effects

The most explored and well-understood epigenetic modification is DNA methylation; however, there is renewed interest in these modification processes as part of a host of disorders including cancers, neurological disorders and more.  Researchers are focusing on how the environment and individual lifestyle might affect gene expression and epigenetic change.  Historical research has demonstrated that environment and sociological impacts can have epigenetic effects on offspring and future generations as a result.   Examples include studies of children whose mothers were exposed to the Dutch famine of 1944-1945.  Those children born during that period have increased rates of coronary heart disease and obesity after maternal exposure to famine in early pregnancy than those not exposed to famine. The result is speculated to be the result of the degree of DNA methylation present in the insulin-like growth factor II (IGF2) gene; decreased methylation was found in the population of offspring whose mothers were exposed to famine.  There are more studies that illustrate the impact of DNA methylation on gene expression.

Initially, it was believed that most of our epigenetic change occurs during development from embryo to fetus into childhood.  While it is accepted that epigenetic changes are less observed in adulthood, epigenetic changes do occur over the human lifespan and in fact, researchers are beginning to believe that some may be able to be reversed.  Some of these post-development reverses include environmental changes like pollution exposure and nutritional changes like embracing a ketogenetic diet.  One study found that the high fat and low carb diet could improve mental abilities through structural chromatin change via histone modification. 

Epigenetics & Cancer

As more molecular advances are made in terms of the human genome as well as in creating structural models of molecules and cellular components necessary for physiological function, the focus epigenetics will expand in parallel.  More studies are coming out discussing findings of epigenetic changes (either initial or reversals) leading to regulation or dysregulation of biological processes involved in the pathogenesis and development of cancer.  And not just one type of cancer.  These changes are being targeted for research because there are possibilities that epigenetic regulatory complexes can affect change on DNA methylation, histone or chromatin modifications to impact transcriptional regulation.

Epigenetics in the Future

There are groups already envisioning and researching ways to utilize circulating tumor DNA (ctDNA), which is released from affected cells, or profiles of DNA modifications found in different cancers.  Groups, like the new team at Stanford Medicine’s Precision Health & Integrated Diagnostics Center, are focused on finding ways to prevent or identify disease very early before true damage has been done.  The group, for example, anticipates developing peripheral blood screening testing for known epigenetic profiles tied to early cancerous development or changes indicative of cancer potential.  Some cancer markers are well known and well-studied, like BRCA in Breast Cancer; these are changes to genetic sequences that can be identified prior to breast cancer development and patients can be informed of their risk.  What is being proposed by Standford’s group is to be proactive, like in BRCA gene presence advisement, rather than reactive, as is the case with many cancer disorders.  The group has suggested that by collecting precise measurements of individuals’ health over a period of time to identify changes indicative of cancerous disorders sooner than current methods available.

Sources: Stanford MedicineGenomics, Proteomics, & BioinformaticsScience Direct;  What is Epigenetics: FundamentalsProceedings of the National Academy of Sciences of the USAMolecular Basis of DiseaseJohns Hopkins Medicine

 

About the Author
  • Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
JUN 27, 2018
Cancer
JUN 27, 2018
Engineered Poliovirus in Clinical Trials for Glioblastoma
Glioblastoma is a very difficult cancer to treat; researchers look to an engineered poliovirus for novel targeted approach for grade IV patients....
JUN 27, 2018
Immunology
JUN 27, 2018
Immune Cells Responsible for Chemo-induced Diarrhea
While studying specific immune cells in the context of chronic itching in the skin, two Washington University School of Medicine scientists discovered that...
JUL 04, 2018
Drug Discovery
JUL 04, 2018
Identifying New Drug Targets in Therapy-Resistant Cancers
Recent research published in the Nature Partner journal Systems Biology and Applications examines how genome-wide data used in collaboration with systems b...
JUL 12, 2018
Infographics
JUL 12, 2018
3D Imaging Advantage
Learn about the advantages and the technology behind 3D cellular image acquisition and analysis with this infographic from Molecular Devices....
JUL 24, 2018
Cancer
JUL 24, 2018
FDA Approves New Drug for Refractory/Relapsed AML
A new drug and new drug class have been approved by the FDA for relapsed or refractory AML patients with an IDH1 mutation. The new drug offers options for patients....
SEP 20, 2018
Genetics & Genomics
SEP 20, 2018
Liquid Phase Separation may Play a Role in Cancer
Not all liquids mix, like oil and water; the phenomenon is called liquid-liquid phase separation. We're learning more about its role in cells....
Loading Comments...