JAN 30, 2017 02:56 PM PST

New TSRI Study Shows Early Brain Changes in Fragile X Syndrome

Image Credit: PeteLinforth/Pixabay

LA JOLLA, CA – January 30, 2017 – A new study led by scientists at The Scripps Research Institute (TSRI) is giving researchers a first look at the early stages of brain development in patients with Fragile X syndrome, a disorder that causes mild to severe intellectual disability and is the most common genetic cause of autism spectrum disorder.

“We’re the first to see that these changes happen very early in brain development,” said TSRI Professor Jeanne Loring, who led the study, published this week in the journal Brain. “This may be the only way we’ll be able to identify possible drug treatments to minimize the effects of the disorder.”

Fragile X syndrome typically occurs when the Fragile X Mental Retardation (FMR1) gene on the X chromosome is epigenetically silenced. People born with the syndrome can show symptoms of hyperactivity, seizures and intellectual disability. Other Fragile X symptoms, such as delayed speech and problems with social interactions, resemble symptoms of autism spectrum disorder.

To better understand the biology of this syndrome and the possibility for early treatment, scientists need to know how the brain of a person with Fragile X syndrome develops—starting with the first weeks in the womb. The problem is that it has been impossible to study the brain so early in development.

Loring’s team tackled this problem using their expertise with induced pluripotent stem cells (iPSCs), which can be taken from almost any tissue in an adult and reprogrammed to become a different kind of tissue. In this case, the researchers used samples from juveniles and adults with Fragile X syndrome and induced the cells to become neurons in a lab dish.

The research revealed that multiple iPSC lines with Fragile X syndrome showed delayed neurodevelopment compared with a non-Fragile X control group, suggesting that the same thing might happen when a fetus develops in utero. The study also suggested that the Fragile X cells had delayed development in formation of neuronal synapses, the connections that neurons make between regions of the brain to send messages. “The cells are in the brain, but they don’t migrate properly or connect correctly,” said Loring.

The scientists also discovered a second, more surprising aspect of the syndrome. The mutation on the X chromosome appeared to trigger genome-wide changes to DNA modifications. These changes, made through a process called DNA methylation, alter gene expression.

“We were really surprised to find that, and it suggests the protein that is lost in Fragile X syndrome has some regulatory role,” said study first author Michael J. Boland, a researcher at TSRI at the time of the study, now at Columbia University.

Working with TSRI alumnus Kristopher L. Nazor, Boland found that these DNA methylation changes appeared to affect many genes associated with autism spectrum disorder, which may help explain why the two disorders show many similarities.

The researchers said they plan to take a closer look at the DNA methylation patterns discovered in this study. They also hope to use the same iPSC reprogramming techniques to study other disorders that start before birth.

“Now we have the tools to ask the questions to advance people’s health,” said Loring.

In addition to Loring, Boland and Nazor, authors of the study, “Molecular analyses of neurogenic defects in a human pluripotent stem cell model of Fragile X syndrome,” were Ha T. Tran, Candace L. Lynch and Pietro Paolo Sanna of TSRI; Attila Szücs of the University of California, San Diego, and Eötvös Loránd University; Ryder Paredes of California State University, Channel Islands; and Flora Tassone of the University of California, Davis.

This study was supported by the California Institute for Regenerative Medicine (CIRM, grants CL1-00502, TR01250, RM1-01717 and TR3-05603), the National Institute of Mental Health (grant R33MH087925-04), the National Institute on Drug Abuse (R21DA032975-01), the Hungarian Brain Research Program (grant KTIA_NAP_13-2014-0018), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant HD02274), the National Institutes of Health (grant GM113929) and an Autism Speaks Fellowship.

This article was originally published on Scripps.edu.

About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
SEP 16, 2019
Cell & Molecular Biology
SEP 16, 2019
How Worms Can Help Researchers Learn More About PTSD
Worms can be traumatized, and the researchers can find the neurons responsible; it can help us learn how hardship impacts the brain....
SEP 16, 2019
Genetics & Genomics
SEP 16, 2019
Is Autism Really 81% Genetic?
A condition that affects 1 in 37 boys and 1 in 151 girls in the US, research is fast-showing that genetics account for 81% of the risk factor for someone t...
SEP 16, 2019
Drug Discovery
SEP 16, 2019
Does Microdosing Really Boost Productivity and Creativity?
Microdosing is the practice of ingesting very low doses of psychedelic substances, typically a twentieth of a recreational dose. In particular, Lysergic ac...
SEP 16, 2019
Neuroscience
SEP 16, 2019
Smartphone-controlled brains?
A team of scientists in Korea and the United States have developed a tiny, flexible, wireless device that can control neurons and neural circuits in the mo...
SEP 16, 2019
Genetics & Genomics
SEP 16, 2019
Modified CRISPR Can Manipulate Gene Activity in Neurons
There are challenges to working with nerve cells in the lab, which can create research bottlenecks in the study of neurological disease....
SEP 16, 2019
Chemistry & Physics
SEP 16, 2019
Scientists Developed Magnetic Nanoparticles that can Remotely Modulate Neural Circuits
Currently, neuroscience researchers rely heavily on invasive procedures to stimulate and study the neural activity of animals. A team of MIT scientists has...
Loading Comments...