Accelerating cures for rare childhood diseases using iPSC models

Speakers
  • CEO/Founder, RARE Science
    Biography
      Dr. Christina Waters' broad range of experience in leading medical research in both biotech/large pharmaceutical companies to non-profits converge to specialize in new approaches to personalized medicine and implementation of new innovative research initiatives to accelerate treatments to patients.
      She serves as SVP and GM of the Global Rare Disease Program at WuXi NextCODE and Founder/CEO of RARE Science, a non-profit research organization that accelerates discovery of therapeutic solutions for kids with rare disease. She serves as a Scientific Advisory board member, for Global Genes, which focuses on rare disease advocacy. Dr. Waters received her Ph.D. in Genetics from UC Davis and was a Postdoctoral Scholar and Associate of the Howard Hughes Medical Institute, California Institute of Technology. Dr. Waters completed an NIH Postdoctoral fellowship at University of California, Berkeley, and received a BS degree from San Diego State University. Dr. Waters received her MBA from UCLA.

    Abstract:

    Creating inducible Pluripotent Stem Cell (iPSC) collections of rare patients scattered world-wide can lower the barrier of biological discovery of rare disease, provide a platform for potential drug repurposing and seed new drug development programs where there is a great unmet medical need. Currently approximately 8,000 rare diseases have been identified that affect close to half billion people world-wide of which only 5% have available therapies.   More than half, hundreds of thousands, of children have rare disease of which 30% die before their 5th birthday.  Two main challenges are 1) access to genetic sequencing and 2) if sequencing is available only 30-50% of the time the etiology is identified that leads to clinical intervention. Even with identification of a causal gene, understanding how the gene, gene variants and variants in concert with other genomic mutations change biology and lead to a clinical phenotype is needed.  In the first step, there is a need to find a critical number of families with the same rare disease which necessitates searching for them around the globe.  Secondly, the creation and use of iPSC lines once families have been identified enable validation of variance of significance through techniques such as gene editing in addition to revealing causal biological pathways. This methodology can accelerate identification of therapeutic options in the immediate addressing the urgency needed in addition to seeding longer term new targeted drug development programs.                                                           


    Show Resources
    You May Also Like
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    NOV 18, 2019 07:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2019 07:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    Loading Comments...
    Show Resources