MENU

Accelerating cures for rare childhood diseases using iPSC models

Speaker

Abstract

Creating inducible Pluripotent Stem Cell (iPSC) collections of rare patients scattered world-wide can lower the barrier of biological discovery of rare disease, provide a platform for potential drug repurposing and seed new drug development programs where there is a great unmet medical need. Currently approximately 8,000 rare diseases have been identified that affect close to half billion people world-wide of which only 5% have available therapies.   More than half, hundreds of thousands, of children have rare disease of which 30% die before their 5th birthday.  Two main challenges are 1) access to genetic sequencing and 2) if sequencing is available only 30-50% of the time the etiology is identified that leads to clinical intervention. Even with identification of a causal gene, understanding how the gene, gene variants and variants in concert with other genomic mutations change biology and lead to a clinical phenotype is needed.  In the first step, there is a need to find a critical number of families with the same rare disease which necessitates searching for them around the globe.  Secondly, the creation and use of iPSC lines once families have been identified enable validation of variance of significance through techniques such as gene editing in addition to revealing causal biological pathways. This methodology can accelerate identification of therapeutic options in the immediate addressing the urgency needed in addition to seeding longer term new targeted drug development programs.                                                           


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
JUN 08, 2021 9:00 AM PDT
JUN 08, 2021 9:00 AM PDT
Date: June 8, 2021 Time: 9:00am PDT Reducing the spread of highly infectious and deadly diseases within the population, vaccine development is crucial in saving millions of lives each year....

Accelerating cures for rare childhood diseases using iPSC models


Specialty

Research And Development

Gene Expression

Dna

Big Data

Cancer Research

Tumor

Biomarkers

Cancer

Earth Science

Oncology

University

Gene Sequencing

Drug Discovery

Mass Cytometry

Cell Culture

Geography

Asia50%

Europe50%

Registration Source

Website Visitors100%

Job Title

Student50%

Medical Laboratory Technician50%

Organization

Manufacturer - Other50%

Academic Institution50%


Show Resources
Loading Comments...
Show Resources