MENU
JUN 20, 2019 6:00 AM PDT

Connecting Genetic and Transcriptional Variation in Acute Myeloid Leukemia at Single-Cell Resolution

Speaker

Abstract

Virtually all tumors are genetically heterogeneous, containing subclonal populations of cells that are defined by distinct mutations. Subclones can have unique phenotypes that influence disease progression, but these phenotypes are difficult to characterize: subclones usually cannot be physically purified, and bulk gene expression measurements obscure interclonal differences. Single-cell RNA-sequencing has revealed transcriptional heterogeneity within a variety of tumor types, but it is unclear how this expression heterogeneity relates to subclonal genetic events – for example, whether particular expression clusters correspond to mutationally defined subclones. To address this question, we developed an approach that integrates enhanced whole genome sequencing (eWGS) with the 10x Genomics Chromium Single Cell 5’ Gene Expression workflow (scRNA-seq) to directly link expressed mutations with transcriptional profiles at single cell resolution. Using bone marrow samples from five cases of primary human Acute Myeloid Leukemia (AML), we generated WGS and scRNA-seq data for each case. Duplicate single cell libraries representing a median of 20,474 cells per case were generated from the bone marrow of each patient. Although the libraries were 5’ biased, we detected expressed mutations in cDNAs at distances up to 10 kbp from the 5’ ends of well-expressed genes, allowing us to identify hundreds to thousands of cells with AML-specific somatic mutations in every case. This data made it possible to distinguish AML cells (including normal-karyotype AML cells) from surrounding normal cells, to study tumor differentiation and intratumoral expression heterogeneity, to identify expression signatures associated with subclonal mutations, and to find cell surface markers that could be used to purify subclones for further study. The data also revealed transcriptional heterogeneity that occurred independently of subclonal mutations, suggesting that additional factors drive epigenetic heterogeneity. This integrative approach for connecting genotype to phenotype in AML cells is broadly applicable for analysis of any sample that is phenotypically and genetically heterogeneous.

Learning Objectives: 

1. Detection of SNVs from RNA-seq in single-cells is possible 
2. SNVs drive subclonal expression signatures in AML


Show Resources
You May Also Like
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
JUN 20, 2019 6:00 AM PDT

Connecting Genetic and Transcriptional Variation in Acute Myeloid Leukemia at Single-Cell Resolution



Show Resources
Loading Comments...
Show Resources