OCT 16, 2013 03:00 PM PDT

The roles of Ack family kinases in Drosophila development

C.E. CREDITS: CE
Speakers
  • Associate Professor, Department of Biological Sciences, Development and Disease, Purdue University
    Biography
      Dr. Chang received a B.A. in Biochemical Sciences from Harvard College (Cambridge, MA) in 1991. He obtained his Ph.D. (1995) with Dr. Gerald Rubin in the Department of Molecular and Cell Biology at University of California, Berkeley, working on genes functioning downstream of Ras GTPase in the Sevenless receptor tyrosine kinase cascade. His post-doctoral training was with Dr. Ira Mellman in the Department of Cell Biology at Yale University School of Medicine, working on J-domain proteins in Drosophila endocytosis. Dr. Chang has been on the faculty at Purdue University since 2004, and currently holds the rank of associate professor in the Department of Biological Sciences.

    Abstract:

    Deregulation of ACK1, a non-receptor tyrosine kinase originally identified by its ability to bind to GTP-bound Cdc42 (hence the name: activated Cdc42-associated kinase)(Manser et al., 1993), correlates with the ability of primary tumors to metastasize (Mahajan et al., 2007; Mahajan et al., 2005; van der Horst et al., 2005). To understand how specific mutations in ACK1 promote oncogenic processes, we have used Drosophila to investigate the roles of Ack family kinases during animal development. The general domain organization of Ack family genes includes a N-terminal SAM (sterile ? motif), tyrosine kinase, SH3 (Src homology 3), CRIB (Cdc42/Rac interacting binding domain), proline-rich region, and C-terminal UBA (ubiquitin-associating domain). Like mammals, Drosophila has two Ack homologs, dAck and dPR2, differing by the presence of the CRIB domain. Although dAck is more similar to ACK1 in amino acid sequence, it lacks the CRIB domain, raising the question whether dAck is a true homolog of ACK1. Using molecular genetics, we show that dAck is the functional homolog of ACK1 and its tyrosine kinase activity is essential for spermatogenesis in a cell autonomous manner. dAck forms a complex with Dock (dreadlocks, the Drosophila homolog of Nck), and its kinase activity is critical for Dock subcellular localization in differentiating male germ cells. Based on these results, we propose that dAck, via SH2-phosphotyrosine interaction, recruits Dock, which assembles multi-protein complexes with its SH3 domains to specific sites to promote sperm morphogenesis.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUL 31, 2019 09:00 AM PDT
    C.E. CREDITS
    JUL 31, 2019 09:00 AM PDT
    DATE: July 31, 2019TIME: 9:00am PT, 12:00pm ET The choroid plexus, which makes up the blood-cerebrospinal fluid barrier in the central nervous system (CNS), lines the ventricle...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    Loading Comments...
    Show Resources