OCT 03, 2018 12:00 PM PDT

Using CRISPR and Stem Cells to Treat Genetic Disease

Presented at: CRISPR 2018
Speaker
  • Senior Investigator, Gladstone Institute of Cardiovascular Disease, Professor Department of Medicine, Division of Genomic Medicine, University of California, San Francisco
    BIOGRAPHY

Abstract

Decoding human genetic disease allows us to develop models of the pathology that can be directly tested with gene correction or targeted drug therapy.  Dominant negative mutations are particularly promising therapeutic targets since they are resistant to traditional therapies, yet precise excision of disease-causing allele could provide a cure. We are using patient-derived induced pluripotent stem cells (iPSCs) to model diseases in tissues that are particularly susceptible to dominant negative mutations: cardiomyocytes, motor neurons and retinal pigment epithelial (RPE) cells. By developing CRISPR genome surgery in human cells, we hope to devise improved cellular models as well as human therapies.  By focusing on allele-specific gene excision we can select gene mutations that are highly penetrant, with clear phenotypes in cell types that can be readily derived from iPSCs.  We use whole genome sequencing to identify common genetic polymorphisms that can be used to selectively inactivate the disease allele with CRISPR nucleases.  The diseased cell types allow us to decode the cellular signatures of disease and determine if the excision of the disease allele restores cellular functioning.  Genome surgery is a rapidly advancing field that uses state-of-the-art techniques that pushes the boundaries of cell and molecular biology. We use advanced microscopy, tissue engineering and single cell genomics to optimize precise editing. We are developing computational methods to select optimal CRISPR/Cas9 combinations in diverse populations. We aim to produce therapies that are safe and cost effective so that they can benefit the maximal number of people. In collaboration with clinical scientists and the Innovative Genomics Institute (https://innovativegenomics.org/) we are preparing large animal models and clinical grade reagents to prepare for human clinical trials.  

Learning Objectives: 

1. Specific examples of where genome surgery could be used
2. Future directions in genome surgery


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
OCT 03, 2018 12:00 PM PDT

Using CRISPR and Stem Cells to Treat Genetic Disease

Presented at: CRISPR 2018

Specialty

Gene Sequencing

Dna Sequencing

Clinical Diagnostics

T-Cells

Gene Expression

Dna

Research

Cell Culture

Immunology

Crispr-Cas9

Pcr/rt-Pcr/real-Time Pcr

Oncology

Human Genetics

Immuno-Oncology

Cancer Diagnostics

Geography

North America42%

Europe25%

Asia17%

Registration Source

Website Visitors100%

Job Title

Research Scientist38%

Student13%

Educator/Faculty13%

Medical Laboratory Technician13%

Genetic Counselor13%

Lab Management13%

Organization

Academic Institution33%

Diagnostic Company8%

Government/public8%

Manufacturer - Other8%

Research Institute8%

Hospital8%

Clinical Laboratory8%


Show Resources
Loading Comments...
Show Resources