OCT 11, 2018 10:30 AM PDT

Drug Targeting for Inflammatory Breast Cancer

Speaker
  • Associate Professor, Biomanufacturing Research Institute and Technology Enterprise, NC Central University
    Biography
      Dr. Kevin P. Williams, Ph.D. is an Associate Professor in the Department of Pharmaceutical Sciences and a faculty member of BRITE at North Carolina Central University. Dr. Williams has over 25 years combined experience in both academic and biopharmaceutical-based research with a focus on cancer and drug discovery. Dr. Williams received his B.Sc. in Biochemistry from the University of Bath in the UK and received his Ph.D. in Biochemistry from the University of Cambridge (UK). He completed his postdoctoral work at Massachusetts General Hospital and the Joslin Diabetes Center in Boston. Prior to joining NCCU in 2007, he spent six years as a Senior Scientist at Biogen in the Department of Protein Engineering and four years at Amphora Corp as Director of Enzyme Drug Discovery. At NCCU he has obtained NIH and DOD research support and mentored 12 Masters level graduate students. His lab currently focuses on identifying novel modulators of the hedgehog pathway. Dr. Williams serves as course director and main instructor for the undergraduate bioprocessing and graduate-level biomanufacturing classes. He is co-author of over 45 publications and co-inventor on 9 patents.

    Abstract

    Two projects looking at novel approaches to targeting inflammatory breast cancer will be presented. Inflammatory breast cancer (IBC) is a unique, understudied, and most lethal subtype accounting for ~15% of all breast cancer deaths. IBC is characterized by Stage III or IV at diagnosis, no solid tumor, typically not detected by mammogram and rapid progression from onset of disease. The incidence of IBC is higher in younger patients and in women of African descent. There are limited treatment options for IBC. Targeted therapy with drugs that target HER1/2 (if the cancer is HER2-positive) e.g. the HER1/2 tyrosine kinase inhibitor lapatinib are one of the few treatment options but drug resistance is observed in the clinic. In the first project, we characterized a novel isogenic-derived progression model of lapatinib drug resistance and re-sensitization using the IBC cell line SUM149. In this study, lapatinib-resistant rSUM149 cells showed cross-resistance to a number of the drugs previously shown to act on the parental cells. The rSUM149 cells had increased levels of anti-apoptotic proteins, increased antioxidant expression, and decreased ability to accumulate reactive oxygen species (ROS), all of which lead to inhibition of drug-induced apoptosis. These results strengthen the need for novel strategies to modulate cellular redox to overcome drug resistance in IBC. In the second project, a major effort of our lab is to identify novel modulators of the hedgehog pathway in breast cancer. Dysregulation of the developmental Hedgehog (Hh) pathway is observed in many cancers with activation of the downstream Hh pathway effector GLI1 being linked to tumorigenesis and invasiveness in breast cancer including IBC. We have profiled a collection of GLI-directed small molecule antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of IBC, with a subset including the direct GLI1 binder GANT61 demonstrating activity in vivo. Further, we have also shown that GLI1 is directly phosphorylated by the kinase DYRK1A at a site within its putative nuclear localization sequence suggesting a possible mechanistic role in modulating its function. Utilizing the BRITE Institute’s capabilities in high-throughput screening we have identified novel and potent DYRK1A inhibitors that are being assessed for cellular and in vivo efficacy.

    Learning Objectives:

    1. Understand some of the new and novel approaches to targeting inflammatory breast cancer
    2. Understand why there are limited treatment options for IBC


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    OCT 11, 2018 10:30 AM PDT

    Drug Targeting for Inflammatory Breast Cancer


    Specialty

    Cancer Research

    Cancer Diagnostics

    Biomarkers

    Gene Expression

    Bioinformatics

    Molecular Biology

    Genetics

    Molecular Diagnostics

    Genomics

    Cancer

    Oncology

    Laboratory Testing

    Dna

    Cytogenetics

    Flow Cytometry

    Geography

    North America50%

    Europe33%

    Asia17%

    Registration Source

    Website Visitors100%

    Job Title

    Student40%

    Clinical Laboratory Scientist20%

    Research Scientist20%

    Medical Laboratory Technician20%

    Organization

    Academic Institution33%

    Hospital17%

    Manufacturer - Other17%

    Government17%

    Other17%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more